浏览记录

   
查看大图

基于车载视频的前方车辆检测与测距系统设计与研究-毕业设计(毕业论文)

  • 商品编号:c++779
  • 货  号:c++779
  • 品  牌:jgyc
  • 开发语言: C
  • 论文字数: 1.2W
  • 市场价: ¥300.00
  • 销售价: ¥200.00
  • 节省: ¥100.00

以下是介绍(不过多网上展示为了防止查重),如需要完整的请联系客服qq购买.提示:本资料已审核通过,内容严格保密,格式标准,质量保证,软件类的包调试成功. 需要这份设计请联系QQ303563675.团购或代理了解点击这里给我发消息

Ctrl+D收藏此篇
app hook
基于车载视频的前方车辆检测与测距系统设计与研究-毕业设计(毕业论文)


4.3 帧差法车辆检测算法

4.3.1 基本思路

运用传统帧差法提取运动目标的过程如下图(4.1)所示,首先,从摄像机采集的视频序列中获取第k帧以及k-1帧进行平滑去噪,将其转换为灰度图像,然后通过帧差法得到二值化图像,最后在进行形态学去噪处理,得到实验结果。

4.3.2 具体算法实现过程

根据二帧差分算法的基本思路,二帧差分算法的实现过程可以分为以下几个步骤:

1)从视频序列中提取连续的两帧图像,我们定义当前帧为第k帧,那么提取目标图像时,选取第k帧和第k-1帧。把提取出来的彩色图像转化为灰度图像,这里采用公式,即

                               (4.1)

将计算得出的Y值替换掉与那里的R、G、B的值,即得到所选取的帧的灰度图像。

2)将第k帧与第k-1帧的灰度图像进行差分运算,即将第k帧图片减去第k.1帧图片,得到二值图像 ,运算公式如下:

式中,T为设定的阈值,当两帧之差大于阈值T时,差值取值为255,当两帧之差绝对值小于阈值T时,差值取0,经过这样的差分处理,我们就可以得到灰度图像的二值化图像。

这里我们主要运用数学形态学的膨胀和腐蚀运算进行去噪处理。由数学形态学的基础理论我们知道,膨胀运算具有扩大图像的作用。将二值图像进行膨胀处理后,将会扩大图像的边缘,可以将检测出来的目标的边缘或者是内部的空洞化填充,从而在一定程度达到去除图像噪声的效果。而腐蚀运算与膨胀运算刚好相反,它对图像具有紧缩的作用,基于这种特性,我们运用腐蚀运算将所提取的目标的边缘多余的部分剔除掉,从而使目标轮廓更加清晰,使检测出来的目标更加精确。膨胀的运算公式为(4.3):

由公式以及数学形态学基本理论我们可知,运用膨胀的方法,我们可以将二值图像中内部的空洞部分填充,或者将边缘缺失的部分补上,以确保图像的完整性。

与膨胀方法相反,腐蚀方法的运算公式为(3.4):

                                                     4.4

由公式以及数学形态学的理论知识我们可以看出,腐蚀方法可以将二值图像中的边缘的“毛刺”剔除掉,把多余的部分锐化掉,使边缘轮廓更清晰,是原来处于一个整体的图像,有更清晰的纹路,从而得到更精确的运动目标。

5)经过数学形态学的去噪处理后,二帧差分算法的运动目标检测基本上就已经完成。由于运动目标的检测受各种因素的影响,因此,在实验时,应当在不同因素的环境干扰下,进行多次实验,以便于对算法做出客观真实的评价。

如果您对本商品有什么问题,请提问咨询!

发表咨询

标题:
*咨询内容:
联系方式: (可以是电话、email、qq等)
*验证码:   看不清楚?换个图片
如果您对本商品有什么评价或经验,欢迎分享!

发表评论

标题:
*评论内容:
联系方式: (可以是电话、email、qq等).
*验证码:   看不清楚?换个图片
<